<optgroup id="gmese"></optgroup>
<optgroup id="gmese"></optgroup>
<tt id="gmese"><samp id="gmese"></samp></tt>
<center id="gmese"></center>
<menu id="gmese"><code id="gmese"></code></menu>

牛吃草问题经典例题

2018-05-20 10:53:57  来源: 小升初网     阅读次数:
字号:

220.jpg

  例:整个牧场上草长得一样密,一样快。27头牛6天可以把草吃完;23头牛9天也可以把草吃完。问21头多少天把草吃完。

  每牛每天的吃草量假设是1,则27头牛6天的吃草量是27X6=162,23头牛9天的吃草量是23X9=207;

  大的减去小的,207-162=45;二者对应的天数的差值,是9-6=3(天)

  结果就是草的生长速率。所以草的生长速率是45/3=15(牛/天);

  原有的草量依此反推。

  公式就是A头B天的吃草量减去B天乘以草的生长速率。

  所以原有的草量=27X6-6X15=72(牛/天)。

  将未知吃草量的牛分为两个部分:

  一小部分先吃新草,个数就是草的比率;

  这就是说将要求的21头牛分为两部分,一部分15头牛吃新生的草;

  剩下的21-15=6去吃原有的草,

  所以所求的天数为:原有的草量/分配剩下的牛=72/6=12(天)

219.jpg

  一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?

  解  草是均匀生长的,所以,草总量=原有草量+草每天生长量×天数。求“多少头牛5天可以把草吃完”,就是说5 天内的草总量要5 天吃完的话,得有多少头牛?    设每头牛每天吃草量为1,按以下步骤解答:

 ?。?)求草每天的生长量

  因为,一方面20天内的草总量就是10头牛20天所吃的草,即(1×10×20);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以

  1×10×20=原有草量+20天内生长量

  同理      1×15×10=原有草量+10天内生长量

  由此可知  (20——10)天内草的生长量为

  1×10×20——1×15×10=50

  因此,草每天的生长量为    50÷(20——10)=5

 ?。?)求原有草量

  原有草量=10天内总草量——10内生长量=1×15×10——5×10=100

 ?。?)求5 天内草总量

  5 天内草总量=原有草量+5天内生长量=100+5×5=125

 ?。?)求多少头牛5 天吃完草

  因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

  因此5天吃完草需要牛的头数    125÷5=25(头)

  答:需要5头牛5天可以把草吃完。

218.jpg

  一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘水,要10小时才能淘完。求17人几小时可以淘完?

  解  这是一道变相的“牛吃草”问题。与上题不同的是,最后一问给出了人数(相当于“牛数”),求时间。设每人每小时淘水量为1,按以下步骤计算:

 ?。?)求每小时进水量

  因为,3小时内的总水量=1×12×3=原有水量+3小时进水量

  10小时内的总水量=1×5×10=原有水量+10小时进水量

  所以,(10——3)小时内的进水量为    1×5×10——1×12×3=14

  因此,每小时的进水量为    14÷(10——3)=2

 ?。?)求淘水前原有水量

  原有水量=1×12×3——3小时进水量=36——2×3=30

 ?。?)求17人几小时淘完

  17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17——2),所以17人淘完水的时间是

  30÷(17——2)=2(小时)

  答:17人2小时可以淘完水。

  牧场上长满牧草,每天牧草都匀速生长。这片牧场可供10头牛吃20天,可供15头牛吃10天,问可供25头牛吃几天?

  思路剖析

  这是以前接触过的“牛吃草问题”,它的算术解法步骤较多,这里用列方程的方法来解决。

  设供25头??沙詘天。

  本题的等量关系比较隐蔽,读一下问题:“每天牧草都匀速生长”,草生长的速度是固定的,这就可以发掘出等量关系,如从“供10头牛吃20天”表达出生长速度,再从“供15头牛吃10天”表达出生长速度,这两个速度应该一样,就是一种相等关系;另外,最开始草场的草应该是固定的,也可以发掘出等量关系。

  解  答

  设供25头??沙詘天。

  由:草的总量=每头牛每天吃的草×头数×天数

  =原有的草+新生长的草

  原有的草=每头牛每天吃的草×头数×天数-新生长的草

  新生长的草=草的生长速度×天数

  考虑已知条件,有

  原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  原有的草=每头牛每天吃的草×15×10-草的生长速度×10

  所以:原有的草=每头牛每天吃的草×200-草的生长速度×20

  原有的草=每头牛每天吃的草×150-草的生长速度×10

  即:每头牛每天吃的草×200-草的生长速度×20

  =每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200草的生长速度×20+每头牛每天吃的草×150-草的生长速度×10

  每头牛每天吃的草×200-每头牛每天吃的草×150

  =草的生长速度×20-草的生长速度×10

  每头牛每天吃的草×(200-150)=草的生长速度×(20-10)

  所以:每头牛每天吃的草×50=草的生长速度×10

  每头牛每天吃的草×5=草的生长速度

  因此,设每头牛每天吃的草为1,则草的生长速度为5。

  由:原有的草=每头牛每天吃的草×25x-草的生长速度×x

  原有的草=每头牛每天吃的草×10×20-草的生长速度×20

  有:每头牛每天吃的草×25x-草的生长速度×x

  =每头牛每天吃的草×10×20-草的生长速度×20

  所以:1×25x-5x=1×10×20-5×20

  解这个方程

  25x-5x=10×20-5×20

  20x=100

  x=5(天)

  答:可供25头牛吃5天。

恒丰彩票平台